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A COMPLIANCE K CALIBRATIC? FOR A PRESURIZED

THICK-WALL CYLINDER WITH A RADIAL CRACK

Cross-Reference
Abstract Data

The K calibration for an internally pressurized, Fracture
thick-wall cylinder with a straight, radial notch h-i Mechanics
been determined from a compliance test. The rethod
suggested by Irwin is used wit- compliance defined as Stress Intensity
t' change in internal volume of a cylinder divided Pactor
by applied hydrostatic pressure rather than the
usual load-e.ongation definition. The derivative of Compliance
internal volume change with respect to notch depth, Test
"a", is obtained by numerical analysis of tangential
strain measurements on the OD of the test cylinder. Cubic Spline
Thia derivative leads directly to the K calibration Functions
for the cylinder. Cubic spline functions are used
to approximate both the strain as a function of Divergence
positi . on the cylinder and the resulting volume Theorem
change as a function of "a". Also included in the
determination of K is a proof, using the divergence
theorem in the 'heory of elasticity, that the
derivatives with respect to "a" of internal and
external volume change are identical. This allows
the use of external stre1n measurements to determine
K bpied on internal Volume change.

The compliance X calibration nearly coincides with
a semi-infinite plate solution simulating both the
tangential stress due to pressure and the direct
effect of pressure in the notch, KI = 1.12 6 W7Fi +
1.13 p 4 i This urexperted agreement, particularly
for values of a/w up to 0.6, is explained by the
combination of bending lconstraint and drop off of
tangential stress in the cylinder wall.
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NOTATIC?

a - Crack or notch depth

A - Cro.3-section area of cylinder material

A0  - Area enclosed by the outside perimeter of the cylinder

C - Compliance, change in length divided by load for a unit thickness
sheet

Cv  - Compliance, internal volume change divided by pressure for a un
length cylinder

E - Young' s modulus

G - Crack extension force per unit length along the crack front

h - Constant applied to plastic zone correction

KI  - Opening mode stress intensity factor

p - Hydrostatic pressure on the ID of a cylinder

r - Radial coordinate of a cylinder

r I  - Inner radius of a cylinder

r 2  - Outer radius of a cylinder

VA - Volume enclosed by th inner surface of a unit length cylinder

Vm - Material volume of a unit length cylinder

Vo  - Volume enclosed by the outer surface of a unit length cylinder

w - Wall thickness of a cylinder

z - Length coordinate of . cylinder

- Uniform tensile stress

L16 - Tangential stress in a cylinder wall

1 y - Tensile yield stress, O.2%

Other notation defined in the text.
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INTRCDUCTION

The determination of stress intensity factors by an experimental compli-

ance test is seldom reported in the literature. This is probably due to the

difficulty in performing compliance experimentt with sufficl nt accuracy and

also due to the limited application of the experimental results, once obtained.

Numerical and analytical K calibrations are often at least as reliable and as

easy to obtain. They can often be applied to many different geometries with

little difficulty. However, experimental K calibrations can be useful when

the geometry is difficult to model or when the experiment is relatively

simple.

In this case the compliance testing of a pressurized thick-wall cylinder

with a narrow radial notch was performed as part of another experiment. Our

purpose here is to use the available compliance results to determine the K

calibration of a thick-wall cylinder for use in design and '.or comarison

with other fracture menhanics analyses. The analysis in the literature which

appears close. t to a thick-wall cylinder geometry is Bowie's solution for a

pressurized hole with a radial crack in an infinite plate( 1). His solution

should correspond to a pressurized cylinder with a radial crack in an

infinitely thick wll. The experimental results will be compared with this

ard other analyses in the sections that follow.

FRACTURE MECHANICS ANALIYIS

The compliance method used to determine the K calibration for a pressur-

ized cylinder is patterned after Irwin's method(2). The usual definition of

6



compliance, i.e., the ratio of change in length of a specimen to the applied

1 ad, is replaced by the ratio of change in internal volume of a cylinder to

the applied pressure. Internal volume and pressure are used to obtain an

expression for crack extension force for a pressurized cylinder similar to

Irwin's expression for a load-displacement system from Ref. (2), which is:

G = 1 F2 SE (1)
7 da

where compliance, C = A , is in terms of the tensile load, F, on a specimen

F

and the resulting change in len-th, Al. In the above, G and C are written

in terms of unit specimen thickness, i.e., unit dimension along the crack

front.

For a Lnit length cylinder at constant internal pressure, the differen-

tial change in strain energy, U, corresponding to a change in internal volure

can be written

dU = _pd( &Vi)2

The Griffith crack extension force is defined as the differential change in

strain enerpy of a system due to a change in crack depth. Thus,

U C = Pd( aVi )
da - 2 A

U-inV a mouified definition cf compliance Cv  =-AVi and Aith r 0nstart,
p

the crack extensin force becomes

1 2 (2)
2



an expression analogous to eq. (1) with tensile load replaced by hydrostatic

pressure. G and Cv are written in terms of unit dimension along the crack

front as before, which in this case is in the length or z Lrection of the

cylinder, see Fig. 1. For plane strain conditions, as in the compliance test

described below, the stress intensity factor is

2 E G E p2  d(4 Vj/p) (3)
1 2(lV2-V 2 )' da_

The K calibration can be calculated simply by determining the change in

internal volume cf the Lylinder at a given value of pressure for a series of

different notch depths and then performing the indicated differentiation.

However, the measurement which can be easily made is the change in outside

volume of the cylinder. If it can be shown that the derivative of compliance

with respect to crack depth determined from the outside volume change is

equivalent to that determined from the inside volume change, then the problem

is solved. Rice(3) has outlined an analysis tlich indicates that the dtriva-

tives are equivalent In the complete analysis below we prove that the

chan~e in material volume of a cylinder in unaffected by the presence )f the

notch provided that tractions on the opposite sides of the notch are the same,

and thus the two derivatives of compliance are "quivalent.

The change in material volume in an elastic body is given by

AVm - f edV

For plane strain, the dilatation - li i - 1,2, hence

4Vaunitlngth f dA (4)

A

8
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where A is the cross-eecticn area of wce body.

The stress-strain rolations for plane-strain are

contraction gives

6i = l (5)

Substituting (5) into (4) gives

A V.iunit length + fIO)d (6)

A

The equation of equilibrium, in absence of body forces is

Tikk - 0 i,k - 1,2

Now consider the following integral with the help of the above

f C jd f 'C k Jkj dA + f Xj Tik,k d'
A A A

- f ( ri'x, + Ij "ikk)dA
A

A

Using the divergence theorem we get the following line integral

x f f p Xd
(rik XJ),k f , k 'ik X f TXj S

A S S
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where are the di-ectiDn cosines of the exterior normals 40 to the line

S, and Ti  are the comprnents of the tractions T acting or. S, see Ref. (4).

hence we have

jr jdA T Xj dS

A S

an. contraction gives

TidA Ti X dS = T r dS (7)

A S S

Substituting () into (6) we have
r

AVm/urit length + T r dSE#

S

Breaking the line into four parts, S = S1 + 52 + S3 + S4 , which coorespond

to the cylinder and notch surfaces as shown in Fig. l, and keeping the outer

normals in mind, we get

4%/unit length Ti r T2  r

( + "I )(I - 2a } (0

3 • r dS - T . • r dS
rI  r1

where TI, T2  are tractions on the inner and outer radii and 3' T are the
- .- 2O-

tractions on the bottom and top of the notch. Now when T3 = , i.e., when

the tractions on both sides of the notch are the same, the last two integrals

vanish, -nd the proposition is proved. This is the case in the problem under

consideration.

11%



For our cylinder then, we have !l - er P, T2 O, where or is a UIA

vector in the radial direction. Using eq. (8) we get

S(l + )(_ 2 2
AV/unit length = p rI  2 7,

the change in material 7olume of the cylinder per unit length ir the s

direction. This result can be checked directly from the Lame solution (5).

From the above we have --- a (A Vm/unit length) - 0 so that eq. (3)

can be w--itten in terms of the outside volume, V., of the cylinder

E d(A Vp) I 1/2
__ =p (9)

12(l - 2da
L

COMPLIANCE TEST

A 1.028 in. ID, 1.995 in. CV, 6 in. long, 4340 stool cylinder was

pressure testsd as shown in Fig. 2. The cylinder was tested in an open ended

condition, i.e., the rams shown in the sketch served it carry the end loads

due to the pressure as well as seal the ends of the cylinder. Thus, thsre

were no z direction stresses produced in the cylinder due to pressure end-

loads. The pressure fluid used was a synthetic instrument oil. No attempt

was made to seal the notch area, so effects due to pressure in the crack were

present in the tube.

The pressure was applied in four 10,000 psi increments for each of ten

notch depths from 0 to .316 inches. The .015 in. thick, 4 in. long wtch

was cut deeper following each pressure run by an electrical discharge machin-

ing process. The circumferential strain on the CD of the cylinder was

measured at the center of notch length with 16 resistance strain gages around

the tube. The strain gage data for 10,00 psi pressure are listed in Table I.

12
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Table I. Measured Tangential Strain at 10,000 psi Presnarv

'AW ICATICK NOrCH LENGTH, in.
NO. DRees 0 AQ M A AQ .ig 181 M 16

1 0 240 220 145 80 5 -10 -90 -120 -375 -495
2 + 7 230 230 180 145 85 95 90 - 235 450
3 - 7 240 225 160 100 105 30- 20- 5-40 100
4 +14 240 25 235 265 265 285 320 325 675 135
5 -14 235 240 215 210 230 21.0 225 255 555 805
6 + 29 240 265 310 360 405 420 470 495 760 840
7 - 29 240 265 300 340 400 400 455 485 780 875
8 + 57 241 260 285 325 365 360 400 425 580 635
9 - 57 235 265 290 330 365 380 405 440 620 665

10 +86 220 250 260 280 295 285 45 32D 395 405
Ui -86 230 255 225 285 - -- 315 - -- --

12 +U5 240 240 24' 245 240 240 215 240 245 2)
13 -115 240 250 240 255 250 2 0 240 255 - 250
14 +143 240 240 230 215 205 200 180 190 140 UO
15 -143 240 240 - 22D 205 215 190 205 155 120
16 tiso 240 240 220 210 190 185 165 160 95 45

The gage positions shown are in degrees away from the point on the CD dir .'ctly

above the notch. A plot of the variation of strain around the tuVbe for a

deep notch and 30,000 psi pressure is hown in Fig. 3 compared with the

uniform strain value for an uncracked cylinde. at the same pressure(5). The

hzigher average erain in the tube due to the presence of the notch can be seen

by a simple visual comp- ison of the two plots.

By careful numerical analysis of all the strain gage data, the change in

outside volume of the cylinder, 4 Vo, and thus its compliance can be accurately

deterdned as a runction of notch length. Since the strain data is taken at

the center of the 6 in. length of the cylinder, any end effects will have

vanished and a plane strain anaysis is appropriate.

14
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NUMERICAL DATA ANALYSIS

By considering only a cross section of the cylinder thragh the strain

gages, the numerical problem may be elmplifi.: and stated as follows. Given

the tangential strain Pt selected points on the circumference of a circle,

we wish to determine numerically the shape of the perimeter of the distorted

figure and from this the increment in area. Lacking knowledge of tne radial

displacement, the problem is somewhat ambiguous. However, if we can interpolate

the tangential strain measurements with an angular function and assume that

the departure of the distorted perimeter from the original circle is small,

then two simplified approaches suggest themselves.

First, w- an integrate the tangential strain to obtain the change in

length of the perimeterI2Wr
AP? r 6 S)dO

0

and assuming the distorted figure remains circular, the change in area enclosed

by the perimeter is

A = 2.P 4 P + (Ap)2
,44 A°

As an alternative approach we can asmume that any "splacement of the

perimeter is solely radial, that is

u0 (r2,0) W 0

and then from

1 u (r 2 ,) ur (r2,)
1(r2, +r2 a e r2

16



we have u,. (r 2 ,8) e(r 2 ,8) • r2 2d 

2m i r 2 4 Urr2,8)

A°= ) r dr dO
o r2

Since these two approaches give reasonable bounds on the amount of

distortion of a circular cross 6 etion, we can assume that the degree to

which they approximate each other is an indication of the numbe'r of signif-

icant figures in our approximatin of the increment in are%.

Our choice of an angular function was an interpolating, periodic, cubic

spline. This function was chosen on grounds of experience, intuition and

personal interest; however, it does belong to the class of functions which

approximate vinimum strain energy and thus is a likely candidate for inter-

pc'.ating (or approximating) strain readings.

We give here a definition of a cubic spline. Thce who are interested

in the details of the construction and manipulation of such functions are

Fferred to refs. 6-,.

Definition of a Cubic Spline

Given an interval S x _5

a mesh on the interval

0:(' = X0 .c l *c

and an associated set of ordinates

Y Yo,-, " ' YN

then a cubic spline satisfies

SA  (Y; x) C2  on

sa (Y; X-) y 0Yj ( Oi,...N)

17



and is coinciden' with a cubic on each subinterval

Xj_. S x S xj (j 1,2, . . . , N)-

If in addition

S p (.)= SA (P)(pG (jO,1,2)

the spline is said to be periodic with perio ( - .

If alternatively

S (Y;xj) = yj+ j (j o,, .. . N)

with the 6j subject to some minimizing constraint, it is said to be an

approximating rather than an interpolating spline.

As described iL the previous section, the data was taken at 16 positions

for 10 crack depths and 4 pressures. Of the 640 possible readings, 16 were

missing because the tube ruptured before the last scheduled measurement, 35

were missing because of gage failure, 3 were apparent gage failures, and one

was judged a transcription error. The last 39 were replaced by bi-quadratic

interpolation.

To indicate the smooth nature of the strain data and interpolating

functions and the --2vious nature of the transcription error, we show fitted

spline functions for four pressures at a crack depth of 0.117 inches, see

Fig. 4. The datum at + 860 and 30,000 psi looks like ent outlier. It was

recorded as 945,ALin/in and quite likely was really 845/i in/in, the value

on the dashec curve in Fig. 4.

It is also apparent upon close examination of the data in Fig. 4 that

the minimum strain is not at the indexed zero. Examination of the sectioned

tube confirmed that the gages were, indeed, displaced a small positive angle

from the true location of the simulated crack; however, this had no effeet

on the computation.

18
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Evaluation of the change in area, dAo, using tlj two methods described

were found to agree with each other to four figures. These results are

presented in Table II.

Table II. Change in Area Enclosed by the Outside Perimeter of the Cylinder

AAc, in. 2

a. i0n. psi at 20,000 psiat Z0,000 si at 0,000 ii

0.0 0.O0l1ASO 0.003009 0.004581 0.006157
0.043 0.001558 0.003130 0.004713 0.006193
0.083 0.001549 O.003126 0.004770 o.006371
0.117 0.001638 0.003315 0.005061 0.006663
0.140 0.001689 0o003452 0.005211 0.006 57
0.152 0.001685 0.003446 0.005271 0.00o .
0.18? OM007,707 0.003559 0.005458 0.007289
0.189 0.001817 0.003682 0.005602 0.007436
0.280 0.002285 0.004610 0.007005 0.009555
0.316 0.002416 0.004939 0.007643

It was now desired to evaluate eq. (9) repeated below

= [2(= E d(4 VO/p) ] 1/2KIP 2(l - V 2) da J I9

where dVo is the change in outside volume of the cylinder per unit length

aid thus is numerically equivalent to A A0 , and also

T * E d( aVo/p) 1/2
KZ/P 2 (l - ,d a* j(O

2

where + I (K is an effective crac length suggested by

L-win(2) to correct for effects of plastic deformation at the crack tip.

We also performed computations varying the correctlon by c constant, h,

h (KI 2a* = A + (n)

to examine the effects of mdifying the correction procedure.

20



To approximate A Vo(a) we used a nor. periodic, approximating, cubic

spline with an algoritn which minimized

f n n 2
Ii

(~a)) dA L 1S(i

where I is introduced to allow us to strike a balance between the amouc f

smoothing desired versus our lsb to respect the integrity of the data.

As a guide to the chice of k we consider the type of K, expressio

common for infinite bodies K, = (constant) a- arA see that

d2 (KI)

is strictly monotonic increaing. Thus, we want I to be small 4nough 9

that this is also true of our' approximating epline.

On the other hand we =st of necaesity evaluate a* and K*/p by &I

iterative process and X must not be so small that this process is unsta)

A value of = 100 proved to b a reasonable cor romire leading to rapi

and stable convergence of KI/p.

.SULTS AND DMUSSIM1

The K calibration results from the numerical a1 alysis of the strain

(eq. 9) are shown in Fig. 5. An Ideal experiment e id analysis would be

expected to give reults wh-:h all lie cp thei same curve. We believe t4

the -min factor which accounts for the variation o 7 the K-/p curves 4s p

deformation at the notch tip. ther factors, suct a the finite notch o

and tleral x i.s of the cylinder due to pres ure fls"I.d heating, cou

affect the resultb. But plastic deformation is - pectqd to occur most. r ,

21
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for combined high pressure and deep not..hes, the same conditions for which

the variation of Kl/p is the greatest. Also, the strain readings taken at

zero pressure after each run suggest that plastic deformaLion is occurring.

Ths average residual strain for all readings through .181 in. notch depth is

3 L in/in., 8/L in/in, for the .189 reading, and 70/s in/in for the .280

in. readings. The tube fractured (at 38,500 psi) before the last pressure

increment with a .316 in. notch present. The increase in residual strain and

eventual fracture with increasing notch depth is a clear indication that

significant plastic deformation was present in the cylinier for deep notches

at high pressure.

The K results including the plastic zone correction of eq. (10) are

shown as dashed curves in the figure. The large shift cf the high pressure-

deep notch results has little significance since the excessive plastic

deformation probably present in these results makes a fracture mechanics

analysis inappropriate. However, it is interesting to see in Fig. 6 that a

smaller correction of h = .3 in eq. (U1) causes all the deep notch data to

fall on the same curve within 0.5%, This tends to support our belief that

plastic deformation around the notch is the major uncertainty in the experi-

ment and analysis.

The corrected 10,000 psi results from Fig. 5, considered to be the best,

are repeated in Fig. 7 along with various analyses. Results are shown fron

Bowie's for a hole with a radial crack in an infinite plate under

biaxial tension. As suW sted in ref. (1), the plane-strain, plate solution

can be used for an internally pressurized cylinder of infinite wall thickness

with a radial crack if tensile load is replaced by pressure in the solution.

23
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The iesulting infinite cylinder K calibration coincides with the well-known

semi-infinite plate aolution( I 0 )

K1  1.126 'V7a (12)

for shallow notches, as would be expected. The semi-infinite plate solution

is plotted in terms of pressure by using the Lam relation( 5 ) between

pressure and tangential stress in a cylinder.

(r2/r) 2 + 1

where r = rI + a

The maximum value of 6e (corresponding to the ID) was used fc-r plotting

the plate solution, so the higher KI/p values for deep notches are expected.

The K calibration for a pressurized cylinder should include the direct

effect of pressure in the notch as well as the effect of the stresses in the

cylinder which are present with no notch. Bueckner(U) obtained a solution

for a pressurized notch in a half space,

KI = 1.13 p V , (14)

where the constant in the expression can be thought of as a free-surface

correction factor applied to the solution for a pressurized notch in an

infinite plate(12). The superposition of the direct pressure effect, eq.

(14), and the tangential stress effect using the maximum value of de

eqs. (12) and (13), results in

K, = 3.06 p'f . (15)

26



The good agreement between the semi-infinite plate solution with

combined pressure and stress and the experimental results it surprising,

particularly for deep notches. It suggests that, if the experiment is to be

believed, effects must be present in the experiment which reduce the expected

increase in K, for deep notches in a finite size specimen. The two dominant

factors which lower the K, of the cylinder are the drop off of tangential

stress through the wall described by eq. (13) and the doubly connected nature

of a hollow cylinder which tends to prevent L.-nding in the wall.

Equation (16) is an attempt to account for these factors by including

the decrease in 40 as a function of r and by including a bending-constraint

expression which limits the increase in K, for deep notches. Our choice for

an expression to represont the bending constraint is the ratio of the K, for

a constrained-end, SN plate(13) to the KI for a semi-infinite plate.

finite plate,

(ra/r2 +l~......... Ir constrained ends,1pI(r2/r)2 1  KI. ref.(13) ,
K, L1.12 {a r 1.13 p Vrr -a'n t. ,(6)

I pateeq. (12)

Of the two sets of results from ref. (13), we chose those for a plate of

2.6 length-to-width ratio as the better representation of the bending

-onstraint in the tes. cylinder. Although the effects of d 8 and bending

constraint both change by as much as 50% for deep cracks, they counteract

one another so that the ne change is hardly noticeable. An expanded portion

of the experimental results and values from eqs. (15) and (16) show just a

few percent spread, see Fig. 8. So apparently, the smaller increase in KI for

deep notches in a cylinder with decreasing stress through the wall and bending

constraint results in a K calibration for the test cylinder not much different

from that of a semi-infinite plate.

27
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It is difficult to comment on th% accuracy of the experimental results

since no solution is available for a direct comparison. Major effects dde

to notch-tip plasticity are probably avoided by using the low pressure data.

The width of the notch is the other factor which could have a major effect

on the results. The good agreement between the experimental K calibration

for shallow notches and the infinite plate solution indicates that the notch

width had no major effect sLice any effect should be at least as great for

shallow notches. Finally, an indication that the experimental K calibration

is not grossly in error is the K, value calculated from the experimental

curve of Fig. 7 for the 38,500 psi fracture pressure and .316 in. notch length.

The value, 120,000 psi J-., is near the critical value of KI expected for

the cylinder material.

Finally, it should be emphasized that the experimental K calibration

shown in Fig. 7 strictly applies only to a cylinder of the dimensions given.

However, we believe it can be extended to any cylinder with the same rr i

ratio by using the square-;.cot size factor common to most K calibrations of

finite specimens. Thus, a KI/prV versus a/w plot of the restlts could be

used for any cylinder of the same diameter ratio.
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